Rewriting, Answering, and Losslessness: A Clarification by the "Four Italians"

Diego Calvanese

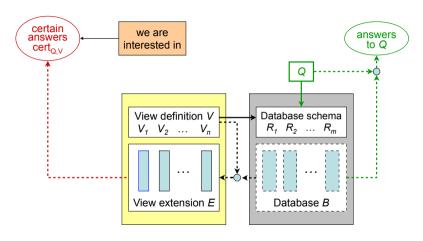
KRDB Research Centre for Knowledge and Data Free University of Bozen-Bolzano, Italy

Department of Computing Science Umeå University, Sweden

VardiFest
31 July – 1 August 2022 – Haifa, Israel

View-based query processing (VBQP)

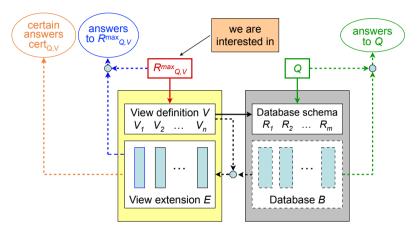
VBQP amounts to computing the answer to a query by relying solely on a set of views


Relevant problem in data integration, data warehousing, query optimization, authorization, etc.

Two different approaches:

- view-based query answering
- view-based query rewriting

View-based query answering (QA)



Open world assumption (sound views): $\mathcal{E}\subseteq\mathcal{V}(\mathcal{B})$

View-based query rewriting (QR)

Open world assumption (sound views): $\mathcal{E} \subseteq \mathcal{V}(\mathcal{B})$

 R_{OV}^{max} expressed in the "same" language as Q (but on V-symbols)

View-based query processing before 2000

- VBQP studied in the DB theory community mostly for the case of conjunctive queries (i.e., select-project-join SQL queries) and variants.
- Confusion between (view-based) QA and QR:
 - For CQs, QA and QR coincide (i.e., R_{OV}^{max} computes $cert_{OV}$).
 - However, they do not coincide in general.
- Need to better understand the relationship between, the query, the rewriting, and the certain answers

View-based query processing after 2000

Inspired by the first nice result on rewriting of RPQs, the Four Italians started to look into VBQP for graph databases.

- Richer setting than CQs, in which we have a more fine-grained distinction between different interesting notions.
- Nice playground for sophisticated automata-theoretic techniques.
- Space for the application of a further powerful tool, namely CSP.

View-based query processing after 2000

Inspired by the first nice result on rewriting of RPQs, the *Four Italians* started to look into VBQP for graph databases.

- Richer setting than CQs, in which we have a more fine-grained distinction between different interesting notions.
- Nice playground for sophisticated automata-theoretic techniques.
- Space for the application of a further powerful tool, namely CSP.

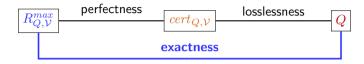
This led to a fruitful line of research and a long-standing collaboration.

VBQP for graph databases

- Graph DB is a directed graph with edge labels in an alphabet Σ (basic binary relations).
- Queries and views are variants of RPQs (i.e., RPQs, 2RPQs, CRPQs, C2RPQs):
 - an RPQ is a regular expression (or an automaton) over the edge labels
 - ullet in RPQs, edges are traversed only forward (r), and in 2RPQs also backward (r^-)
 - the result of a query Q is the set of pairs of nodes connected by a path in $\mathcal{L}(Q)$
 - C(2)RPQs are as CQs, but with (2)RPQs instead of predicates

VBQP for graph databases

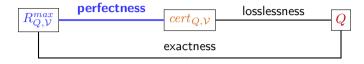
- Graph DB is a directed graph with edge labels in an alphabet Σ (basic binary relations).
- Queries and views are variants of RPQs (i.e., RPQs, 2RPQs, CRPQs, C2RPQs):
 - an RPQ is a regular expression (or an automaton) over the edge labels
 - in RPQs, edges are traversed only forward (r), and in 2RPQs also backward (r^{-})
 - the result of a query Q is the set of pairs of nodes connected by a path in $\mathcal{L}(Q)$
 - C(2)RPQs are as CQs, but with (2)RPQs instead of predicates


In this setting, we were interested in better understanding the relationships between:

- the maximally contained rewriting R_{OV}^{max}
- the certain answers $cert_{Q,V}$ (viewed as a query)
- the original query Q

VardiFest - 31/7-1/8/2022

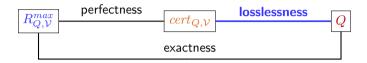
Exactness: comparing R_{QV}^{max} and Q



The maximal rewriting $R_{Q,\mathcal{V}}^{max}$ of Q wrt views \mathcal{V} is **exact** if for every database \mathcal{B} we have that $Q(\mathcal{B}) = R_{Q,\mathcal{V}}^{max}(\mathcal{V}(\mathcal{B}))$.

Exactness means losslessness of the rewriting wrt the query. (Note that exactness = perfectness + losslessness.)

Perfectness: comparing R_{OV}^{max} and $cert_{OV}$



The maximal rewriting $R_{Q,V}^{max}$ of Q wrt views V is **perfect** if for every database \mathcal{B} and every view extension \mathcal{E} with $\mathcal{E} \subseteq \mathcal{V}(\mathcal{B})$ we have $\underbrace{cert_{\mathcal{O},\mathcal{V}}(\mathcal{E})}_{\mathcal{O},\mathcal{V}}(\mathcal{E}) = R_{\mathcal{O},\mathcal{V}}^{max}(\mathcal{E})$.

Perfectness means that the maximal rewriting is powerful enough to compute the certain answers.

Perfectness allows us to compute $cert_{Q,V}$ by evaluating $R_{Q,V}^{max}$ over the view extension.

Losslessness: comparing $cert_{Q,V}$ and Q

A set of views \mathcal{V} is **lossless** wrt a query Q, if for every database \mathcal{B} we have that $Q(\mathcal{B}) = cert_{Q,\mathcal{V}}(\mathcal{V}(\mathcal{B}))$.

Losslessness means that the views are powerful enough to precisely answer the query.

Losslessness means that if we had access to the database, we could compute $cert_{O,V}$ by evaluating Q over the database.

The role of automata for VBQP in graph databases

In our work, we have developed and relied on different automata-theoretic characterizations:

- QR for RPQs
- QA for RPQs under various assumptions (closed vs. open domain, sound vs. exact views) via ad-hoc automata constructions.
- QA for 2RPQs via two-way automata
- QR for 2RPQs

The role of automata for VBQP in graph databases

In our work, we have developed and relied on different automata-theoretic characterizations:

- QR for RPQs
- QA for RPQs under various assumptions (closed vs. open domain, sound vs. exact views) via ad-hoc automata constructions.
- QA for 2RPQs via two-way automata
- QR for 2RPQs

In (almost) all cases we obtained instances of

"Moshe's Automata-theoretic Meta-theorem"

By using automata (and not doing anything stupid) you get optimal complexity result.

VBQP in graph databases and CSP

Many of our results rely on a characterization of QA for (2)RPQs via non-uniform CSP.

- We associate to the query Q and view definitions $\mathcal V$ the constraints template $CT_{Q,\mathcal V}$:
 - structure over the alphabet $\mathcal{V} \cup \{U_i, U_f\}$ (for RPQs);
 - ullet keeps track how the states of the NFA for Q change when following in the DB path according to the views.
- We associate to the view extension \mathcal{E} and two objects c,d the constraint instance $\mathcal{E}^{c,d}$, which is also a structure over $\mathcal{V} \cup \{U_i, U_f\}$.

Characterization of QA via non-uniform CSP

 $(c,d) \notin \underbrace{cert_{Q,\mathcal{V}}}$ iff there is a homomorphism from $\mathcal{E}^{c,d}$ to $CT_{Q,\mathcal{V}}$

We have exploited this characterization also for various problems related to VBQP for RPQs:

- QA, QR
- losslessness
- perfectness
- view-based guery containment

This fruitful research over many years resulted in almost 30 papers with collectively almost 1500 citations (and 3 papers still contributing to Moshe's h-index).

Thanks Moshe for making this possible!